

Unusual Carotid Diseases: Dissection, Webs and FMD

W. Darrin Clouse, MD Edwin P. Lehman Professor and Chief Vascular & Endovascular Surgery University of Virginia Health System

12th Annual Current Concepts in VASCULAR THERAPIES Virginia Beach, VA April 19, 2024

Disclosure

• Consultant & Speaker: Humacyte, Inc.

Carotid Dissection

SpontaneousTraumatic

Carotid Pseudoaneurysm

- Traumatic
- Post-intervention (CEA)
- Post-Dissection

Carotid Dissection

Spontaneous:

- HTN, Migraine, Seasonal, Younger patients, Childbirth, FMD, CTD, Familial
- 1-3% incidence; 2-3% recurrence

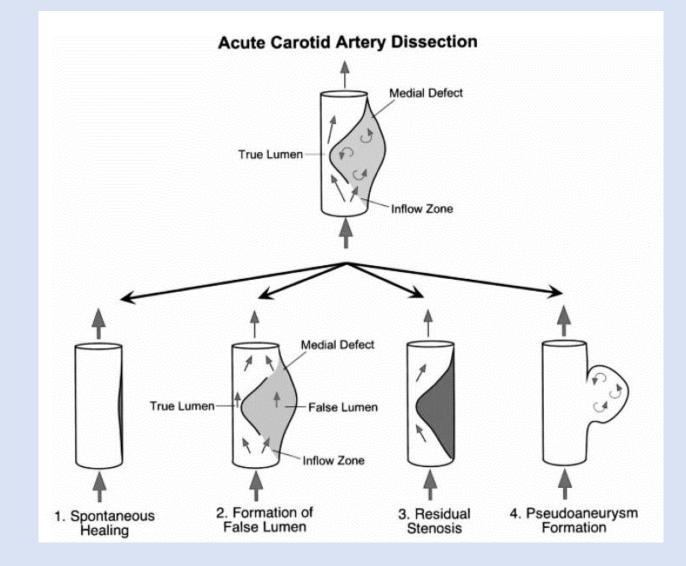
Traumatic:

- Secondary to carotid surgery (rare)
- Other iatrogenia (rare)
- Blunt head and neck injury
 - 0.5-1% incidence
 - Up to 3-4% with altered MS

Carotid PSA

Post Dissection

up to 10% after dissection


Traumatic

Evolution of blunt or penetrating injury

Post-CEA

- Occurs in less than 0.5%
- Suture line failure, patch material, arterial degeneration, infection

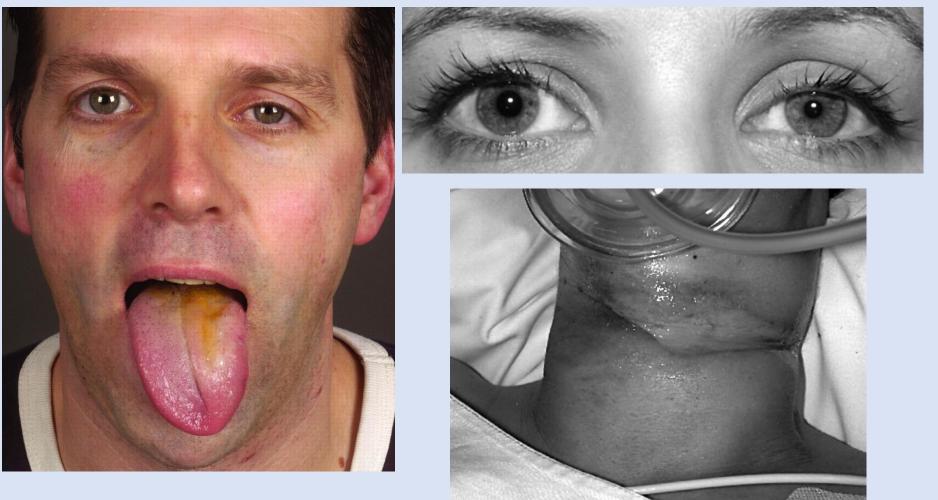
Carotid Dissection-Spontaneous

- Type I: Minimal irregularity
- Type II: > 70% Stenosis/Aneurysm

njury Grade	Description				
1	Luminal irregularity or dissection with <25% luminal narrowing				
Ш	Dissection or intramural hematoma with \geq 25% luminal narrowing, intraluminal thrombus, or raised intimal flap				
III	Pseudoaneurysm				
IV	Occlusion				
V	Transection with free extravasation				

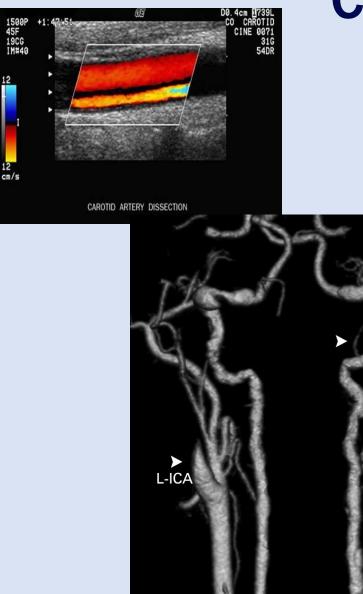
Carotid Injury

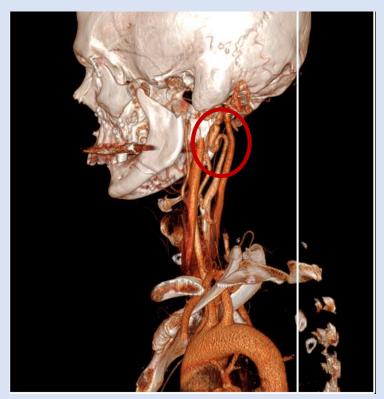
• Type III: Occlusion

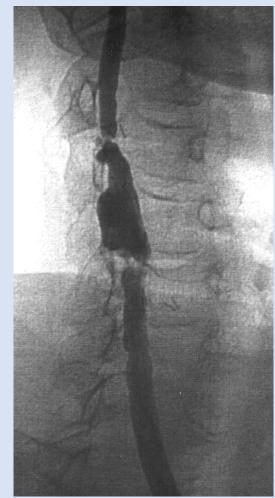


Carotid Dissection Clinical Signs and Symptoms

- HA and Neck pain
- CVA/TIA (represents up to 25% of stroke in young)
- Horner's (ptosis, miosis, anhidrosis with ECA)
- CN palsies (IX-XII): XII most common
- Tinnitus-pulsatile
- Pulsatile mass and compression







12

Carotid Dissection

Neurologic Burden

• Spontaneous:

2% of CVA; 10-20% in young/ middle age

Traumatic

30% Mortality (5-8% due to CD) 20% permanent deficit

Management

Antithrombotic Therapy: Anticoagulation/Antiplatelet?

Open Operation

Endovascular Treatment

[Intervention Review] 2010 Antithrombotic drugs for carotid artery dissection

Outcome: I Death from all causes

Total (95% CI) Total events: 8 (antiplatelets), 12 (a Heterogeneity: $Chi^2 = 8.12$, df = Test for overall effect: Z = 1.16 (P	$ (P = 0.70); ^2 = 0.0\%$	977		2.02 [0.62, 6.60]
Outcome: 2 Death or	disability		0.001 0.01 0.1 1 10 100 1000 favours AP tr. favours AC tr.	
Total (95% CI) Total events: 58 (antiplatelets), 8 Heterogeneity: Chi ² = 15.52, df Test for overall effect: Z = 1.88	$f = 16 (P = 0.49); I^2 = 0.0\%$	329	•	1.77 [0.98, 3.22]
			0.01 0.1 1 10 10 favours AP tr. favours AC ti	

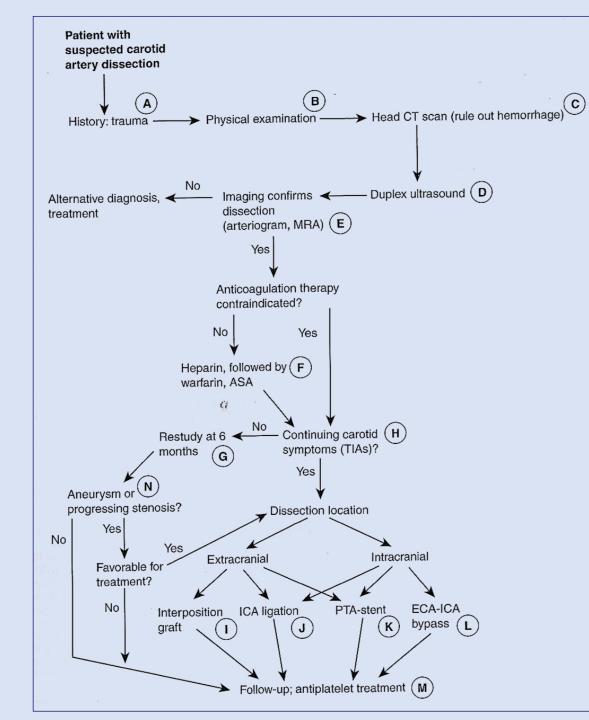
[Intervention Review] 2010 Antithrombotic drugs for carotid artery dissection

Outcome: 3 Ischaemic stroke (during follow-up) Total (95% CI) 300	962	-	0.63 [0.21, 1.86]
Total events: 6 (antiplatelets), 18 (anticoagulation)			
Heterogeneity: Chi ² = 14.84, df = 12 (P = 0.25); l ² =19%			
Test for overall effect: $Z = 0.83$ (P = 0.41)			
		0.002 0.1 I I0 500	
Outcomer 4 Sumptomatic interpretial bacmantage		favours AP tr. favours AC tr.	
Outcome: 4 Symptomatic intracranial haemorrhage Total (95% CI) 258	627		0.25 [0.02, 3.36]
Total events: 0 (antiplatelets), 5 (anticoagulation)	,		
Heterogeneity: $Chi^2 = 0.02$, $df = 2$ (P = 0.99); $I^2 = 0.0\%$			
Test for overall effect: $Z = 1.05$ (P = 0.30)			
		0.01 0.1 1 10 100	
Outcome: 5 Major extracranial haemorrhage Total (95% CI) 197	425		0.19 [0.02, 1.48]
Total events: 0 (antiplatelets), 7 (anticoagulation)			
Heterogeneity: $Chi^2 = 0.04$, $df = 2$ (P = 0.98); $I^2 = 0.0\%$			
Test for overall effect: $Z = 1.58$ (P = 0.11)			
		0.001 0.01 0.1 1 10 100 1000	

Vascular and Endovascular Surgery

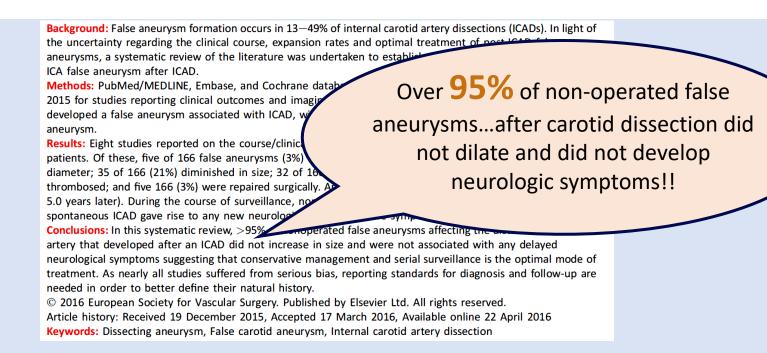
JAMA Neurology | Original Investigation

Antiplatelet Therapy vs Anticoagulation Therapy in Cervical Artery Dissection The Cervical Artery Dissection in Stroke Study (CADISS) Randomized Clinical Trial Final Results


Hugh S. Markus, FMedSci; Christopher Levi, MD; Alice King, PhD; Jeremy Madigan, FRCR; John Norris, MD; for the Cervical Artery Dissection in Stroke Study (CADISS) Investigators

	No.								
	Intention-t	Intention-to-Treat Analysis				Per Protocol Analysis			
	Antiplatelets ($n = 126$)		Anticoagulants (n = 124)		Antiplatelets (n = 101)		Anticoagulants (n = 96)		
Event	0-3 mo	3-12 mo	0-3 mo	3-12 mo	0-3 mo	3-12 mo	0-3 mo	3-12 mo	
Ischemic stroke									
Ipsilateral	3	1	1	1	3	1	1	0	
Other	0	0	0	0	0	0	0	0	
TIA									
Ipsilateral	1	0	4	0	1	0	3	0	
Other	1	0	0	1	1	0	0	1	
Major bleeding	0	0	1	0	0	0	1	0	
Death	0	1ª	0	0	0	1 ^a	0	0	

Stroke risk at 1-year 2.5%



Fate of Distal False Aneurysms Complicating Internal Carotid Artery **Dissection: A Systematic Review**

Eur J Vasc Endovasc Surg (2016) 52, 281-286

K.I. Paraskevas^a, A.J. Batchelder^b, A.R. Naylor^{b,*}

^a Department of Vascular Surgery, Southampton University Hospital, Southampton, UK ^b Department of Vascular Surgery, Vascular Research Group, Division of Cardiovascular Sciences, Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK

Indications for Intervention in CD

Early

- Symptoms persist/stutter/progress on medical therapy
- Contraindication to AC
- Enlarging PSA/?extensions

Late

- Severe Stenosis
- Symptomatic
- Aneurysm formation

Long-term outcomes of internal carotid artery dissection

Atul S. Rao, MD, Michel S. Makaroun, MD, Luke K. Marone, MD, Jae S. Cho, MD, Robert Rhee, MD, and Rabih A. Chaer, MD, *Pittsburgh*, *Pa*

Objective: The natural history of acute carotid artery dissection is poorly characterized. The purpose of this study is to report on single institutional long-term outcomes.

Methods: A retrospective review of patients treated for acute spontaneous or posttraumatic carotid artery dissection over a 20-year period from August 1989 to July 2009 was performed.

Results: Twenty-nine patients with a mean age of 47 ± 19.6 years were identified with acute carotid dissection. Six (25%) were related to trauma, while 23 (79%) were spontaneous. Neurologic symptoms included contralateral limb weakness (55%), facial pain (35%), and Horner's syndrome (21%). Eight patients (28%) presented with an acute hemispheric stroke. Diagnostic imaging modalities used included computed tomography angiography (52%), magnetic resonance angiography (41%), and conventional angiography (48%). Twenty percent of patients had complete carotid occlusion and 25% had near occlusion. Most dissections (65%) had intracranial extension, and 35% were limited to the extracranial cervical internal carotid. The majority (96%) of patients were treated conservatively with anticoagulation or antiplatelet therapy or both. One patient underwent stenting for persistent symptoms resulting in complete recovery. There were two deaths, one from unrelated traumatic injuries and the other from unknown causes. Long-term follow-up was available for 20 patients: 14 had complete symptom resolution (70%) and five (25%) had partial clinical symptom resolution. Two patients had initial resolution of symptoms, with subsequent recurrence that was successfully managed conservatively. Follow-up imaging revealed luminal patency in 79% of patients with minimal residual stenosis. Two patients developed a small asymptomatic internal carotid dissections can safely be conservatively managed, with the majority achieving anatomic and symptomatic resolution, with low rates of recurrence over long-term follow-up. (J Vasc Surg 2011;54:370-5.)

UPMC CD Experience

- 29 consecutive: 6 trauma, 23 (79%) SCD
- 8 acute strokes (28%)
- 18% ICA occlusion/27% near-occlusion
- All treated medically(AC 96%; AP 62%)
- I patient CAS for persistent symptoms
- 70% complete symptom resolution: 25% partial
- 1 trauma related death; 1 unknown
- 2 (6.9%) patients post-CD aneurysm
- 79% luminal patency with minimal narrowing

Long-term outcome of cervical artery dissection

Mohammed Janquli, MD,^{a,b} Logeswaran Selvarajah, MD,^{a,b} Michael Anthony Moloney, MD,^{a,b} Eamon Kavanagh, MD,^{a,b} Damien Christopher O'Neill, MD,^{a,b} and Mekki Medani, MD,^{a,b} Limerick, Ireland

ABSTRACT

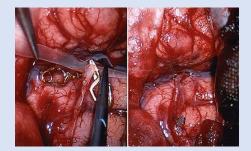
Objective: The aim of the study is to evaluate the natural history of extracranial cervical artery dissection (CAD) including comorbidities, symptoms at presentation, recurrence of symptoms, and long-term outcome following different treatment approaches.

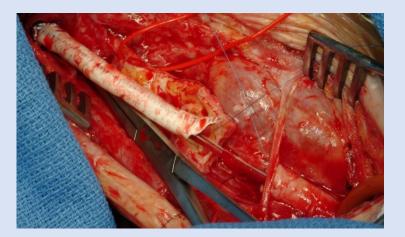
Methods: A retrospective review of patients treated for acute CAD was performed over a 5-year period from January 2017 to April 2022.

Results: Thirty-nine patients were included in the study, 25 (64.1%) with acute internal carotid artery dissection and 14 (35.9%) with acute vertebral artery dissection. Thirty-four patients (87.1%) had spontaneous CAD, and five patients (12.8%) had traumatic CAD. The mean age of the cohort was 54.2 years. The mean time from symptom onset to presentation was 4.34 days. The most common symptoms in internal carotid artery dissection were unilateral weakness (44%), headache (44%), slurred speech (36%), facial droop (28%), unilateral paraesthesia (24%), neck pain (12%), visual disturbance (8%), and Horner's syndrome (8%). The most common symptoms in vertebral artery dissection were headache (35.7%), neck pain (35.7%), vertigo (28.57%), ataxia (14.28%), and slurred speech (14.28%). The imaging modalities used for diagnosis included computed tomography angiography (48.7%), magnetic resonance angiography (41%), and duplex ultrasound (10.2%). In patients with carotid artery dissection, 57% had severe stenosis, 24% had moderate stenosis, and 20% had mild stenosis. All patients treated were managed conservatively with either anticoagulation or antiplatelets. Long-term clinical followup was available for 33 patients (84.6%). Thirty patients (90.9%) reported complete resolution of symptoms, and three patients (9%) reported persistent symptoms. Anatomic follow-up with imaging was available for 17 patients (43.58%). Thirteen patients (76.47%) had complete resolution of dissection, two patients (11.76%) had partial resolution of dissection, and two patients (11,76%) had persistent dissection. There was one death unrelated to CAD in a multi-trauma patient. There were four early recurrent symptoms in the first 3 to 8 weeks post discharge. The mean follow-up time was 308.27 days.

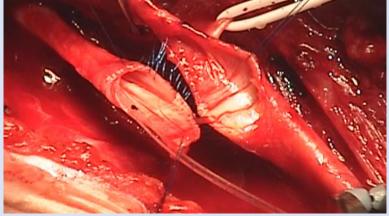
Conclusions: The majority of CADs can be managed conservatively with good clinical and anatomical outcome and low rates of recurrence. (J Vasc Surg 2023;78:158-65.)

Recent Limerick experience: confirms benignity of cervical carotid/vertebral dissection





Α В С D


Carotid Dissection Open Repair

Carotid Dissection Open Repair

Surgical treatment of 50 carotid dissections: Indications and results

Barbara Theresia Müller, MD, Bernd Luther, MD, Waldemar Hort, MD, Tobias Neumann-Haefelin, MD, Albrecht Aulich, MD, and Wilhelm Sandmann, MD, *Düsseldorf, Germany*

J Vasc Surg 2000;31:980-8.

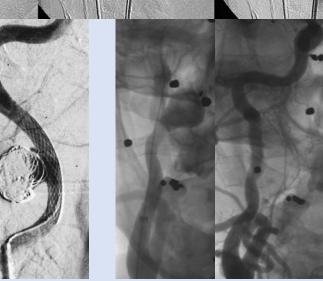
Table III. Indication for operative intervention

Cause	No. of operations (%)	Table V. Early results of therapy
Aneurysm Stenosis Aneurysm and stenosis	27 (54) 13 (26) 9 (18)	N operation
Acute intervention	1 (2)	Basenterentian anteret 25

Table IV. Operative technique

Technique	No. of operations (%)
Resection, vein interposition graft	40 (80)
Ligation or clip	5 (10)
Thromboendarterectomy + patch angioplasty	3 (6)
Dilatation	2 (4)

	No. of operations (%)	
Reconstruction patent	35 (70)	
Ligation or clip	5 (10)	
Early occlusion	10 (20)	
Perioperative death (intracranial bleeding)		1 (2)
Perioperative minor recurrent	5 (10)	
Perioperative cranial nerve dan	29 (58)	

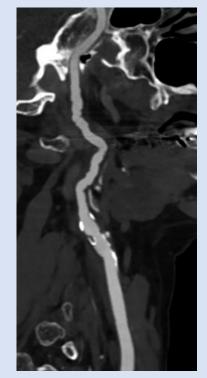


Carotid Dissection Endovascular Repair

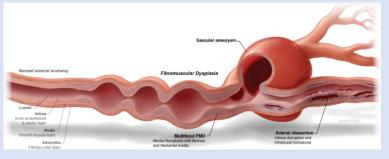
- Bare-metal stenting
- Coiling with stenting
- Covered stenting
- Flow diversion

Endovascular Repair

Endovascular Repair of Extracranial Carotid Artery Dissection: Current Status and Level of Evidence


Konstantinos P. Donas, MD, Dieter Mayer, MD, Ivo Guber, MD, Ralf Baumgartner, MD, Michele Genoni, MD, and Mario Lachat, MD

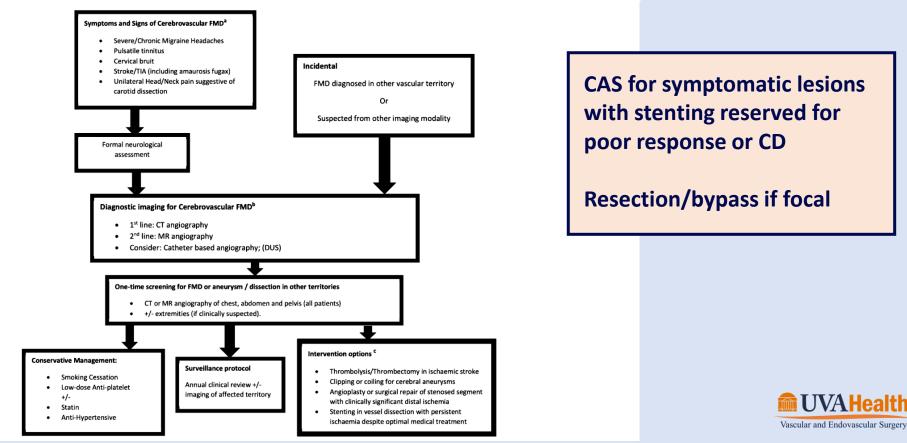
Clinical Outcome


Cause of Carotid Dissection	No. of Patients	No. of Studies*	Mean Follow-up (mo)	Central Neurologic Deficit†	Local Signs or Asymptomatic‡	Complete Recovery§	Permanent Neurologic Deficit
Spontaneous	12	4	12.8	8/12	4/12	12/12	0
Trauma	22	5	14	7/22	15/22	20/22	2/22
Spontaneous and trauma	28	4	20.2	0/28	28/28	22/28	6/28
Total	62	13	15.7	15/62	47/62	54/62	8/62

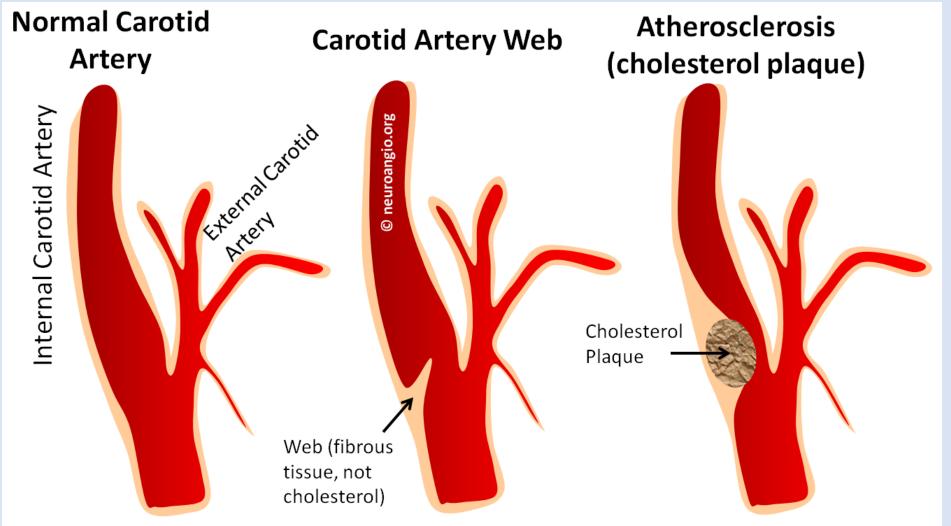
Carotid Artery Fibromuscular Dysplasia

- 0.4-3% of population
- Idiopathic; affecting medium-sized arteries Theories
 - Hormonal
 - Genetic
 - Developmental
 - Vasa vasorum abnormality
- Poly-arterial: renal, carotid, mesenteric, extremity
 - 75 % Carotid Involvement
 - 55% Multivessel
- Women, 5th decade, Caucasian

- Cerebral Aneurysms/Carotid Dissection
- Medial Fibroplasia 85%
 - perimedial dysplasia 10%
 - intimal fibroplasia 5%
 - medial hyperplasia rare



Carotid Artery Fibromuscular Dysplasia


A Retrospective Cohort Study of Cerebrovascular Fibromuscular Dysplasia

Anthousa Kythreotou,¹ Ruwan A. Weerakkody,^{1,2} Kantida Koysombat,¹ Natalie Marzouqa,² and Daryll M. Baker,^{1,2,3} London, United Kingdom

Ann Vasc Surg 2023; 92: 104-110

A Systematic Literature Review of Patients With Carotid Web and Acute Ischemic Stroke

Andrew J. Zhang, BA; Parth Dhruv, MD; Philip Choi, MBChB; Caitlin Bakker, MLIS, AHIP; Jonathan Koffel, MSI; David Anderson, MD; Jae Kim, MD; Bharathi Jagadeesan, MD; Bijoy K. Menon, MD; Christopher Streib, MD, MS Stroke. 2018;49:2872-2876

Morphological characteristics of symptomatic and asymptomatic carotid webs

Borna Ethan Tabibian, MD, Matthew Parr, MD, Arsalaan Salehani, MD, Anil Mahavadi, MD, Sage Rahm, MD, Manmeet Kaur, MD, Sasha Howell, MD, Jesse G. Jones, MD, Elizabeth Liptrap, MD, and Mark R. Harrigan, MD

Carotid webs management in symptomatic patients

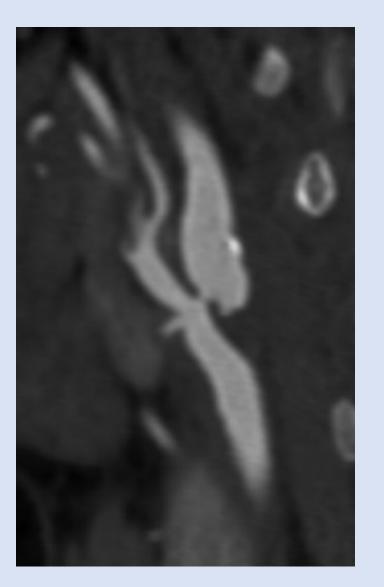
Sébastien Multon, MD,^a Christian Denier, MD, PhD,^b Phillippe Charbonneau, MD,^a Mariana Sarov, MD,^b David Boulate, MD,^a Delphine Mitilian, MD,^a Justine Mougin, MD,^a Olivier Chassin, MD,^b Nicolas Legris, MD,^b Elie Fadel, MD, PhD,^a Stephan Haulon, MD, PhD,^a and Dominique Fabre, MD, PhD,^a Paris, France

J Vasc Surg 2021;73:1290-7

Symptomatic carotid webs require aggressive intervention

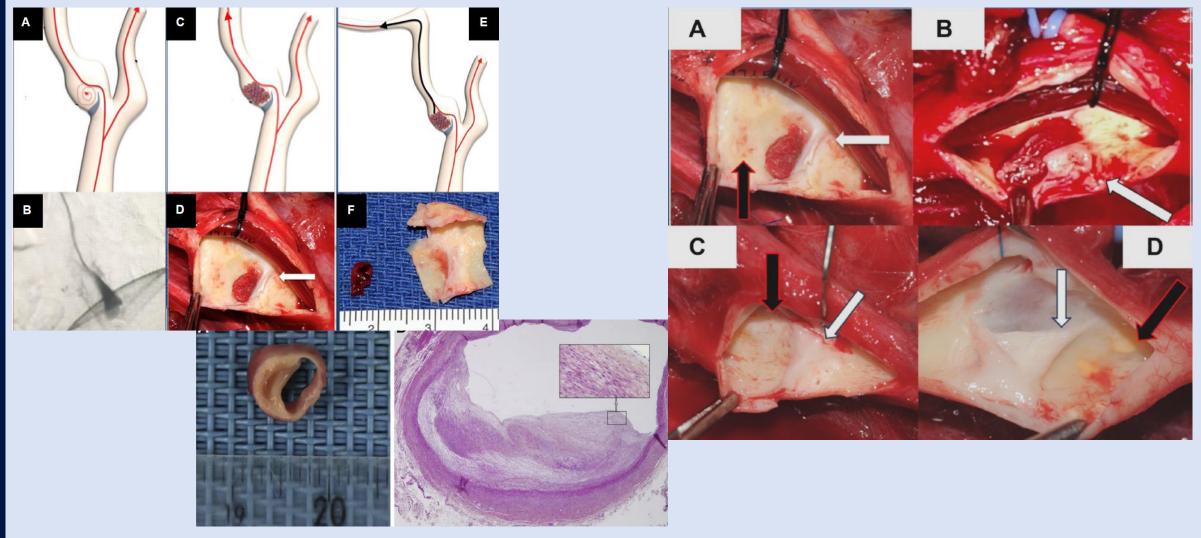
Clayton J. Brinster, MD,^a James O'Leary, MD,^a Aaron Hayson, MD,^a Andrew Steven, MD,^b Charles Leithead, MD,^a W. Charles Sternbergh III, MD,^a Samuel R. Money, MD, MBA,^a and Gabriel Vidal, MD,^c New Orleans, LA

J Vasc Surg 2024;79:62-70


Clinical, imaging, and management features of symptomatic carotid web: Insight from CAROWEB registry International Journal of Stroke 2024, Vol. 19(2) 180–188 © 2023 World Stroke Organization Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/17474930231204343 journals.sagepub.com/home/wso S Sage

Carotid webs: a review of pathophysiology, diagnostic findings, and treatment options

Huanwen Chen ⁽¹⁾, ^{1,2} Marco Colasurdo ⁽¹⁾, ³ Matias Costa, ⁴ Erez Nossek, ⁵ Peter Kan ⁽¹⁾, ^{1,2} Marco Colasurdo ⁽¹⁾, ³ Matias Costa, ⁴ Erez Nossek, ⁵ *NeuroIntervent Surg* 2024;**0**:1–6. doi:10.1136/jnis-2023-021243



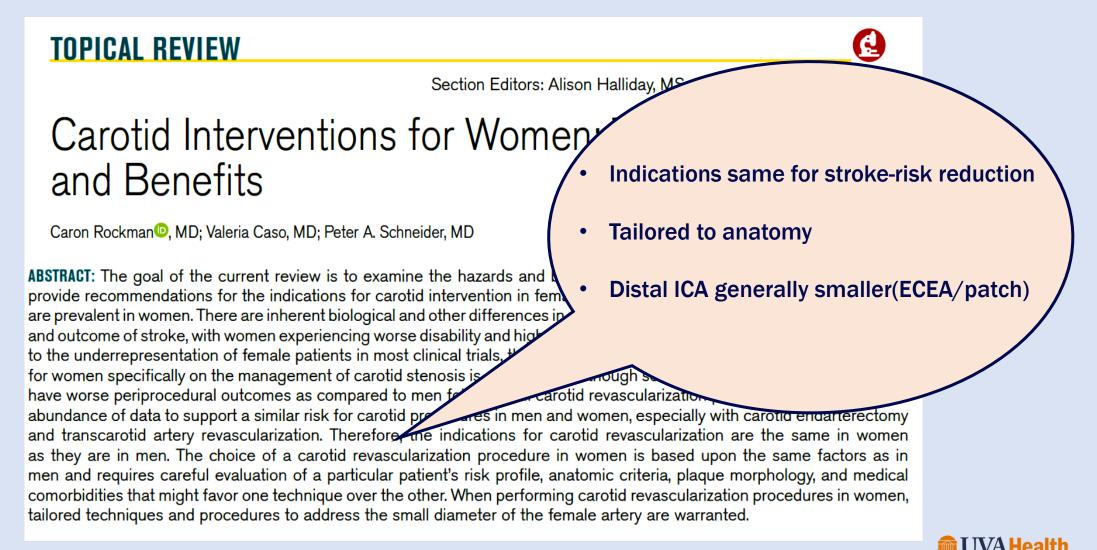
- Atypical, focal FMD
- Those with "cryptogenic stroke"
- Symptomatic lesions are malignant
 - Carry a very high recurrence
 - Intervention (CEA/CAS)
- Asymptomatic Lesions
 - Aggressive antiplatelet (DAPT?)
 - Careful close surveillance
 - Intervention with significant stenosis
- Frequently Bilateral
- Imaging tricky
 - Duplex
 - **CTA**
 - MRA
 - Careful inspection of axial imaging when suspected

Carotid Stenosis in Women

TOPICAL REVIEW

Section Editors: Alison Halliday, MS, and Giuseppe Lanzino, MD

Carotid Interventions for Women: The Hazards and Benefits


Caron Rockman^(D), MD; Valeria Caso, MD; Peter A. Schneider, MD

Stroke. 2022;53:611-623. DOI: 10.1161/STROKEAHA.121.035386

ABSTRACT: The goal of the current review is to examine the hazards and benefits of carotid interventions in women and to provide recommendations for the indications for carotid intervention in female patients. Stroke and cerebrovascular disease are prevalent in women. There are inherent biological and other differences in men and women, which affect the manifestations and outcome of stroke, with women experiencing worse disability and higher mortality following ischemic stroke than men. Due to the underrepresentation of female patients in most clinical trials, the ability to make firm but alternative recommendations for women specifically on the management of carotid stenosis is challenging. Although some data suggest that women might have worse periprocedural outcomes as compared to men following all carotid revascularization procedures, there is also an abundance of data to support a similar risk for carotid procedures in men and women, especially with carotid endarterectomy and transcarotid artery revascularization. Therefore, the indications for carotid revascularization are the same in women as they are in men. The choice of a carotid revascularization procedure in women is based upon the same factors as in men and requires careful evaluation of a particular patient's risk profile, anatomic criteria, plaque morphology, and medical comorbidities that might favor one technique over the other. When performing carotid revascularization procedures in women, tailored techniques and procedures to address the small diameter of the female artery are warranted.

Carotid Stenosis in Women

Vascular and Endovascular Surgery

